΢ Ͷ ^ ھ

cba男篮比赛日程 :ʹtensorflow DataSetFЧd׃Lıݔ

cba㶫 www.axwwg.com  •rg2020-01-26 11:00:57   ߣ   ҪuՓ(0)

DataSettensorflow 1.3汾Ƴһhigh-levelapi1.3汾߀ֻ̎ڜyԇA1.4汾ѽʽƳ
ھWһlFPʹDataSetdıY

DataSettensorflow 1.3汾Ƴһhigh-levelapi1.3汾߀ֻ̎ڜyԇA1.4汾ѽʽƳ

ھWһlFPʹDataSetdıYϱ^ٷeֻcsvʽҪcsvļИӱ횾ͬľSҲpaddingڌcsvļ֮ǰ@ļĴС

^һvԇ@oһDataSet+TFRecordsd׃Lӱķ

Ȱ׃LĔ뵽TFRecordsļ

def writedata():
 xlist = [[1,2,3],[4,5,6,8]]
 ylist = [1,2]
 #@ĔֻeӁfӱıLȲһһӱ3~˺1ڶӱ4~˺2
 writer = tf.python_io.TFRecordWriter("train.tfrecords")
 for i in range(2):
  x = xlist[i]
  y = ylist[i]
  example = tf.train.Example(features=tf.train.Features(feature={
   "y": tf.train.Feature(int64_list=tf.train.Int64List(value=[y])),
   'x': tf.train.Feature(int64_list=tf.train.Int64List(value=x))
  }))
  writer.write(example.SerializeToString())
 writer.close()

ȻDataSetd

feature_names = ['x']
 
def my_input_fn(file_path, perform_shuffle=False, repeat_count=1):
 def parse(example_proto):
  features = {"x": tf.VarLenFeature(tf.int64),
    "y": tf.FixedLenFeature([1], tf.int64)}
  parsed_features = tf.parse_single_example(example_proto, features)
  x = tf.sparse_tensor_to_dense(parsed_features["x"])
  x = tf.cast(x, tf.int32)
  x = dict(zip(feature_names, [x]))
  y = tf.cast(parsed_features["y"], tf.int32)
  return x, y
 
 dataset = (tf.contrib.data.TFRecordDataset(file_path)
    .map(parse))
 if perform_shuffle:
  dataset = dataset.shuffle(buffer_size=256)
 dataset = dataset.repeat(repeat_count)
 dataset = dataset.padded_batch(2, padded_shapes=({'x':[6]},[1])) #batch size2xmaxlen=6padding
 iterator = dataset.make_one_shot_iterator()
 batch_features, batch_labels = iterator.get_next()
 return batch_features, batch_labels
 
next_batch = my_input_fn('train.tfrecords', True)
init = tf.initialize_all_variables()
with tf.Session() as sess:
 sess.run(init)
 for i in range(1):
  xs, y =sess.run(next_batch)
  print(xs['x'])
  print(y)

ע׃LĔTFRecordsҪVarLenFeatureȻsparse_tensor_to_denseDQ

@ƪʹtensorflow DataSetFЧd׃LıݔСoҵȫϣܽoһҲϣҶ֧_֮

ܸdȤ:

  • tensorflowT:TFRecordDataset׃LbatchxȡԔ
  • tensorflow ׃Lд惦
  • QtensorflowӖrȴmӲռMĆ}

P

  • ʹtensorflow DataSetFЧd׃Lıݔ

    ʹtensorflow DataSetFЧd׃Lıݔ

    DataSettensorflow 1.3汾Ƴһhigh-levelapi1.3汾߀ֻ̎ڜyԇA1.4汾ѽʽƳ ھWһlFPʹDataSetdıY
    2020-01-26
  • \ՄtensorflowDatasetDƬxȡSȵIJԔ

    \ՄtensorflowDatasetDƬxȡSȵIJԔ

    SxȡDƬw, h, c: import tensorflow as tf import glob import os def _parse_function(filename): # print(filename) image_string = tf.r
    2020-01-26
  • tensorflowʹrange_input_producerྀxȡ

    tensorflowʹrange_input_producerྀxȡ

    ȷPIa i = tf.train.range_input_producer(NUM_EXPOCHES, num_epochs=1, shuffle=False).dequeue() inputs = tf.slice(array, [i * BATCH_SIZE], [BATCH
    2020-01-26
  • Ptf.reverse_sequence()

    Ptf.reverse_sequence()

    tf.reverse_sequence() ڿbidirectional_dynamic_rnn()Դaĕr˴a{ reverse_sequence()@һֻȥ@÷lF
    2020-01-26
  • pRNN:bidirectional_dynamic_rnn()ʹԔ

    pRNN:bidirectional_dynamic_rnn()ʹԔ

    pRNNbidirectional_dynamic_rnn()ʹԔ fžʲôҪʹõpRNNxһƪµĕrᵽϢʮֵҪ@ЩϢDzԲ׽
    2020-01-26
  • Ptf.nn.dynamic_rnnֵԔ

    Ptf.nn.dynamic_rnnֵԔ

    ԭ tf.nn.dynamic_rnn( cell, inputs, sequence_length=None, initial_state=None, dtype=None, parallel_iterations=None, swap_memory=Fal
    2020-01-26
  • pythonCWxgboostʹ

    pythonCWxgboostʹ

    1.xȡ ԭxgboostxȡlibsvm import xgboost as xgb data = xgb.DMatrix(libsvmļ) ʹsklearnxȡlibsvm from sklearn.
    2020-01-26
  • \ՄTensorflow ӑBpRNNݔ}

    \ՄTensorflow ӑBpRNNݔ}

    tf.nn.bidirectional_dynamic_rnn() def bidirectional_dynamic_rnn( cell_fw, # ǰRNN cell_bw, # RNN inputs, # ݔ sequence_length=No
    2020-01-26
  • pythonȡվӕϢČFa

    pythonȡվӕϢČFa

    TxֻץȡQϢdַ惦 칤DBUtil.py import pymysql class DBUtils(object): def connDB(self):
    2020-01-26
  • TFRecordʽ惦cxȡ

    TFRecordʽ惦cxȡ

    Tensor FlowٷWվṩNxȡķ 1. AdTensor FlowDжx׃Д,ֱǶDӖ^r
    2020-01-26