΢ Ͷ ^ ھ

cba山西队赛程 :\ՄtensorflowDatasetDƬxȡSȵIJԔ

cba㶫 www.axwwg.com  •rg2020-01-26 11:00:56   ߣ   ҪuՓ(0)

SxȡDƬw, h, c:


import tensorflow as tf

import glob
import os


def _parse_function(filename):
# print(filename)
image_string = tf.r

SxȡDƬw, h, c:

import tensorflow as tf
 
import glob
import os
 
 
def _parse_function(filename):
  # print(filename)
  image_string = tf.read_file(filename)
  image_decoded = tf.image.decode_image(image_string) # (375, 500, 3)
 
  image_resized = tf.image.resize_image_with_crop_or_pad(image_decoded, 200, 200)
  return image_resized
 
 
 
 
with tf.Session() as sess:
 
  print( sess.run( img ).shape  )

xȡDƬxȡDƬb, w, h, c:

import tensorflow as tf
 
import glob
import os
 
'''
  Dataset xȡDƬ
'''
 
def _parse_function(filename):
  # print(filename)
  image_string = tf.read_file(filename)
  image_decoded = tf.image.decode_image(image_string) # (375, 500, 3)
 
  image_decoded = tf.expand_dims(image_decoded, axis=0)
 
  image_resized = tf.image.resize_image_with_crop_or_pad(image_decoded, 200, 200)
  return image_resized
 
 
 
img = _parse_function('../pascal/VOCdevkit/VOC2012/JPEGImages/2007_000068.jpg')
 
# image_resized = tf.image.resize_image_with_crop_or_pad( tf.truncated_normal((1,220,300,3))*10, 200, 200) @NľS ʽǿԵ
 
with tf.Session() as sess:
 
  print( sess.run( img ).shape  ) #ֱӳʼͿ DQľSe`֪ʲôlՈ e`
  #InvalidArgumentError (see above for traceback): Input shape axis 0 must equal 4, got shape [5]

DatabaeIJ

import tensorflow as tf
 
import glob
import os
 
'''
  Dataset xȡDƬ
  
    ԭ
      1. ȶxDƬlist,Dataset from_tensor_slices
      2. ӳ亯 ںlistеĈDƬMxȡresize,
        tf.read_file(filename) صS@ÿȡһDƬMеҪDľS
        Ȼ󌦈DƬMresize, ȻÿbatchML@ get_next() ص [batch, w, h, c ]
      3. Mshuffle , batch repeatO
      
      4. iterator = dataset.make_one_shot_iterator() Oõ
      
      5. iterator.get_next() @ȡÿbatchĈDƬ
'''
 
def _parse_function(filename):
  # print(filename)
  image_string = tf.read_file(filename)
  image_decoded = tf.image.decode_image(image_string) #(375, 500, 3)
  '''
    Tensor` with type `uint8` with shape `[height, width, num_channels]` for
     BMP, JPEG, and PNG images and shape `[num_frames, height, width, 3]` for
     GIF images.
  '''
 
  # image_resized = tf.image.resize_images(label, [200, 200])
  ''' images SľSĶ
     images: 4-D Tensor of shape `[batch, height, width, channels]` or
      3-D Tensor of shape `[height, width, channels]`.
    size: A 1-D int32 Tensor of 2 elements: `new_height, new_width`. The
       new size for the images.
  
  '''
  image_resized = tf.image.resize_image_with_crop_or_pad(image_decoded, 200, 200)
 
  # return tf.squeeze(mage_resized,axis=0)
  return image_resized
 
filenames = glob.glob( os.path.join('../pascal/VOCdevkit/VOC2012/JPEGImages', "*." + 'jpg') )
 
 
dataset = tf.data.Dataset.from_tensor_slices((filenames))
 
dataset = dataset.map(_parse_function)
 
dataset = dataset.shuffle(10).batch(2).repeat(10)
iterator = dataset.make_one_shot_iterator()
 
img = iterator.get_next()
 
with tf.Session() as sess:
  # print( sess.run(img).shape ) #(4, 200, 200, 3)
  for _ in range (10):
    print( sess.run(img).shape )

@ƪ\ՄtensorflowDatasetDƬxȡSȵIJԔСoҵȫϣܽoһҲϣҶ֧_֮

ܸdȤ:

  • tensorflowT:TFRecordDataset׃LbatchxȡԔ
  • tensorflow ׃Lд惦
  • QtensorflowӖrȴmӲռMĆ}
  • ʹTensorflowԼĔָbatchӖ

P

  • \ՄtensorflowDatasetDƬxȡSȵIJԔ

    \ՄtensorflowDatasetDƬxȡSȵIJԔ

    SxȡDƬw, h, c: import tensorflow as tf import glob import os def _parse_function(filename): # print(filename) image_string = tf.r
    2020-01-26
  • tensorflowʹrange_input_producerྀxȡ

    tensorflowʹrange_input_producerྀxȡ

    ȷPIa i = tf.train.range_input_producer(NUM_EXPOCHES, num_epochs=1, shuffle=False).dequeue() inputs = tf.slice(array, [i * BATCH_SIZE], [BATCH
    2020-01-26
  • Ptf.reverse_sequence()

    Ptf.reverse_sequence()

    tf.reverse_sequence() ڿbidirectional_dynamic_rnn()Դaĕr˴a{ reverse_sequence()@һֻȥ@÷lF
    2020-01-26
  • pRNN:bidirectional_dynamic_rnn()ʹԔ

    pRNN:bidirectional_dynamic_rnn()ʹԔ

    pRNNbidirectional_dynamic_rnn()ʹԔ fžʲôҪʹõpRNNxһƪµĕrᵽϢʮֵҪ@ЩϢDzԲ׽
    2020-01-26
  • Ptf.nn.dynamic_rnnֵԔ

    Ptf.nn.dynamic_rnnֵԔ

    ԭ tf.nn.dynamic_rnn( cell, inputs, sequence_length=None, initial_state=None, dtype=None, parallel_iterations=None, swap_memory=Fal
    2020-01-26
  • pythonCWxgboostʹ

    pythonCWxgboostʹ

    1.xȡ ԭxgboostxȡlibsvm import xgboost as xgb data = xgb.DMatrix(libsvmļ) ʹsklearnxȡlibsvm from sklearn.
    2020-01-26
  • \ՄTensorflow ӑBpRNNݔ}

    \ՄTensorflow ӑBpRNNݔ}

    tf.nn.bidirectional_dynamic_rnn() def bidirectional_dynamic_rnn( cell_fw, # ǰRNN cell_bw, # RNN inputs, # ݔ sequence_length=No
    2020-01-26
  • pythonȡվӕϢČFa

    pythonȡվӕϢČFa

    TxֻץȡQϢdַ惦 칤DBUtil.py import pymysql class DBUtils(object): def connDB(self):
    2020-01-26
  • TFRecordʽ惦cxȡ

    TFRecordʽ惦cxȡ

    Tensor FlowٷWվṩNxȡķ 1. AdTensor FlowDжx׃Д,ֱǶDӖ^r
    2020-01-26
  • ʹ tf.nn.dynamic_rnn չ_rgSȷʽ

    ʹ tf.nn.dynamic_rnn չ_rgSȷʽ

    چ΂ RNNCell  ʹɫ call M\r ֻЕrgǰMһ  ʹ x1 ho õh1 ͨ^ x2  h1 õ h2  tf.nn.dynamic_r
    2020-01-26